Fifth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Fundamentals of CMOS VLSI

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain the action of enhancement mode transistor for different values of V_{gs} and V_{ds} .

(08 Marks)

- b. Explain the second order effects viz.
 - (i) Focoler Nordheium Tunneling.
 - (ii) Drain punch through.
 - (iii) Impact ionization.

(06 Marks)

c. Describe in detail CMOS fabrication in an P-well process.

(06 Marks)

- a. Draw schematic, stick diagram, layout for nMOS 2-input NOR gate, where 4: 1 ratio for pull up and 1: 1 ratio for each pull-down. Specify λ-based rules for layout. (12 Marks)
 - b. Provide the λ -based design rules for transistors, contact cuts and vias. (08 Marks)
- 3 a. Realize 2-input NAND gate as example in,
 - (i) BiCMOS logic.
 - (ii) Pseudo-nMOS logic.

Discuss merits and demerits.

(10 Marks)

- b. Explain the dynamic CMOS logic with example. List the problems and solution for issues.
 (10 Marks)
- 4 a. What are the scaling factor for:
 - (i) Gate capacitance
 - (ii) Maximum operating frequency
 - (iii) Current density
 - (iv) Power speed product.

(10 Marks)

b. Define sheet resistance and standard unit of capacitance \Box Cg. Calculate the ON resistance for NMOS inverter with $R_{SN} = 10 \text{ K}\Omega$, $Z_{PU} = 4$ and $Z_{pd} = 1$, V = 5 V. And calculate power dissipiation. (10 Marks)

<u>PART – B</u>

- 5 a. Design a parity generator, where output is 1 for even number of one's and draw the stick diagram for one basic cell. (10 Marks)
 - b. In the circuit shown in Fig. Q5 (b). Find V_1 , V_2 , V_3 , V_4 . Assume threshold voltage of each transistor is V_{tn} . (04 Marks)

c. Draw the basic form of a 2-φ clock generator and explain.

(06 Marks)

10EC56

6	a.	Discuss the architectural issues to be followed in the design of a VLSI sub-system	. (06 Marks)
	b.	Realize a 4×4 barrel shifter using MOS switches and explain in brief.	(06 Marks)
	c.	Explain carry skip adder.	(08 Marks)
7	a.	Discuss the various system timing consideration.	(04 Marks)
	b.	Explain the 3T DRAM cell with stick diagram.	(10 Marks)
	c.	Describe the CMOS pseudo-static RAM circuit.	(06 Marks)
8	a.	Explain different types of Input/Output pads.	(05 Marks)
	b.	List the ground rules for a system design.	(05 Marks)
	c.	Write a note on Built-in self test.	(05 Marks)
	d.	Write a note on BiCMOS logic with neat circuit.	(05 Marks)

* * * * *